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The behavior of two interacting populations “hosts” and “parasites” is investigated on Cayley trees and
scale-free networks. In the former case analytical and numerical arguments elucidate a phase diagram for the
susceptible-infected-susceptible model, whose most interesting feature is the absence of a tricritical point as a
function of the two independent spreading parameters. For scale-free graphs, the parasite population can be
described effectively by its dynamics in a host background. This is shown both by considering the appropriate
dynamical equations and by numerical simulations on Barabási-Albert networks with the major implication
that in the thermodynamic limit the critical parasite spreading parameter vanishes. Some implications and
generalizations are discussed.
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I. INTRODUCTION

Population models, or reaction-diffusion systems, have at-
tracted enormous interest both in the statistical physics com-
munity and as abstract versions of real biological dynamics.
One particular aspect is the presence of phase transitions and
the contact process or directed percolation in various dis-
guises �see below, �1,2��.

Host-parasite or predator-prey systems are a natural ex-
tension of single species models. By their classical results
Lotka and Volterra were able to explain the nature of abun-
dance oscillations in interacting species �3,4�. In regular
landscapes or lattices, with a finite spreading rate of the spe-
cies, these oscillations appear as traveling waves, which can
be regular or chaotic, depending on the interplay of time
scales in population dynamics and spreading, though it is not
clear if the phenomenon survives in the thermodynamic limit
�5–11�. In nature they have been observed in different sys-
tems, to name two extreme cases, e.g., in vole populations
�12� and for human diseases such as measles �13�. In the case
of measles in a population living on a landscape of nontrivial
island structure, power law fluctuations are found instead
�14�.

Much of these ideas have recently been generalized in the
context of small-world or in particular “scale-free” graphs
�15–18�. For the latter, a perfectly valid example is given by
epidemics of viruses in the Internet since it has as a graph a
fat-tailed probability distribution of the number of nearest
neighbors, P�k�. Recently, various models have been studied
as the particulars of the structure—like the so-called degree
distribution � in P�k��k−�—are varied. A fundamental dis-
covery concerning disease spreading is an absence of epi-
demic threshold in the limit of infinite graphs and the finite-
size effective “critical point” obeys an unusual scaling as L,
the graph size, is varied �19–21�.

This closely relates to the present work where we study
the influence of a network or graph like structure of the un-
derlying landscape on host-parasite or predator-prey dynam-

ics. The main findings are �i� the absence of oscillations, �ii�
the absence of an infection threshold in the limit of an infi-
nite scale-free graph, and �iii� the existence of two separate
transitions in the case of Bethe lattices with finite coordina-
tion number z �“empty” → “hosts only,” “hosts only” →
“hosts plus parasites,” but no transition “empty” → “hosts
plus parasites”�. The structure of the rest of the paper is as
follows. Section II contains the necessary definitions, and the
two following ones analytical considerations and, to com-
pare, numerical simulations of the models. Finally, Sec. V
finishes the paper with a discussion.

II. MODEL FORMULATION

A. States and rates

A basic model for epidemiological applications is the con-
tact process, or the so-called susceptible-infected-susceptible
�SIS� model. Here one considers individuals living on the
nodes of an underlying graph which are either infected �I� or
susceptible �S� to an infection. An infected individual may
spread the disease to a susceptible one if both are in contact,
i.e., if they live on neighboring nodes of the graph. Infected
individuals recover with a certain rate and in this simple
version immediately become susceptible for a new infection.
So the dynamics of the SIS model is defined by the rates

rS→I = � if any neighbor is infected,

rI→S = 1. �1�

In this work we generalize the SIS model to a system with
hosts and parasites �HP�. In other words we consider infec-
tions of a second kind only able to spread onto sites with
infections of first kind. So each node in the graph can be in
three possible states: Empty �e�, or populated by a healthy
host �h� or a host with parasite �p�. Between three states
there are six possible transitions so the dynamics are defined
by the following rates �Fig. 1�:
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re→h = � if any neighbor has a host �h� ,

rh→p = �� if any neighbor is parasitized �p� ,

rh→e = 1,

re→p = 0,

rp→h = � ,

rp→e = � . �2�

As in the SIS model defined above the decay of the host or
first kind of infection sets the time scale �rh→e=1�. In bio-
logical systems ��1 �even �1� if the parasite affects the
health of the host. A benefit would mean �	1. We shall
consider cases in which the parasite virtually does not die
“on its own” but only when the host is killed, i.e., the case
0��
1,� ,�� ,�.

In Sec. III we present approximate analytical solutions
following �19� to the the model of Eqs. �3� which are com-
pared to Monte Carlo simulations in Sec. IV. Particular in-
terest lies in parasite extinction and its dependence on the
parasite spreading rate ��. But first we define the types of
graphs used in our simulations and calculations.

B. Graphs

We study the population dynamics of the HP model on
two types of graphs, on Bethe lattices and on scale-free
Barabási-Albert �BA� graphs, in their standard version �21�.
A Bethe lattice of coordination number z is an infinite tree,
where each node has z neighbors. When constructing a finite

lattice, or Cayley tree, starting from a central node with z
neighbors and adding z−1 new neighbors to each boundary
node, the number of boundary nodes grows exponentially. It
therefore remains a finite fraction of the total number of
nodes in the finite tree, which makes this construction unsuit-
able for Monte Carlo simulations.

This difficulty can be overcome by a slight modification
�22� where a sparse homogeneous graph that closely ap-
proximates the Bethe lattice without any boundary nodes is
constructed. Take L nodes and label them by integers from 1
to L. Connect node i to node �i+1� for each i and connect
node 1 to node L. Construct �z−2� independent random pair-
ings of the nodes �an easy way to construct pairings is to sort
the nodes randomly and pair the first node of this new order
with the second one etc.� of the nodes and add an edge for
each pair. By this procedure, we get a graph in which each
node is of degree z. For large enough graphs, the loops are
negligible �22� and this is a sufficient approximation of a
Bethe lattice.

Here, we also use the standard version of Barabási-Albert
graphs �21�. These are constructed as usual. New nodes are
added one by one connecting them with m=3 links to the
previous ones. From these, the neighbors are chosen with a
probability proportional to their respective number of links
�preferential attachment�. By this construction highly linked
nodes are likely to obtain even more neighbors as the graph
grows, which results in a fat-tail distribution of probabilities
for a node to have coordination number k, P�k��k−3 �21�.
The BA graphs have very weak degree correlations, i.e., the
conditional probability for a node of degree k to have a
neighbor with k� is rather trivial �15� compared to many
other models and real networks.

III. MEAN FIELD AND DOUBLET APPROXIMATION

A. Bethe lattice

1. Singlet (mean field) approach

In this subsection we extend the known solution for the
SIS model on a Bethe lattice �19� to the HP model. �h and �p
denote the density of hosts and parasites, respectively. For
simplicity we consider the limit �=0, so parasitized patches
do not supply host individuals to neighboring empty patches.
The rate equations for the densities can be written as

�t�h = − �h + ��1 − �p − �h�� − ���h

�t�p = − ��p + ���h , �3�

with =1− �1−�p�z and �=1− �1−�h�z.
In the absence of parasites the host population follows the

dynamics of a SIS model. The trivial state �h=0 is stable for
��1/z and unstable otherwise. In other words, the host
population can survive only for ��1/z.

Similarly, the pure host phase is stable if parasites cannot
invade, i.e., if the growth rate of a small parasite population
is smaller than its death rate,

FIG. 1. States and rates.
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��z�h 	 � or � 	
1

z�h
� �crit. �4�

From this formula it can be seen that �crit→� as �h→0, so
there is no “tricritical point” in the phase plane, beyond
which a direct transition from the absorbed state to the co-
existence state can be seen. The phase diagram is drawn in
Fig. 2.

2. Doublet approach

The singlet approach neglects occupancy correlations be-
tween adjacent nodes. The next logical step is a pair or dou-
blet approximation which explicitly treats the joint probabili-
ties to find two unparasitized hosts next to each other �Phh�,
a healthy host next to a parasitized one �Php�, and two para-
sitized next to each other �Ppp� in addition to �h and �p. This
approximation is widely used, we want to emphasize its ap-
plication to a spatially uniform insect host-parasitoid model
�23,24�, to the contact process in a one-dimensional chain �2�
and in general over a wide class of models �25�.

The approximation uses the probabilities P��� to find the
nodes adjacent to a randomly picked bond in states � and
��� �e ,h , p	, as well as the conditional probabilities ��
�� to
find a randomly chosen nearest neighbor of a �� node in state
�. Three-point and higher correlations are neglected, so the
conditional probabilities to find a � node next to a �� node
which is itself linked to a third node with state �� are ap-
proximated by

��
���� � ��
�� ∀ ��. �5�

From there one obtains the rate equations

�t�h = �− 1 − z���p
h + z��e
h��h, �6�

�t�p = �− � + z���h
p��p, �7�

�tPhh = − �2 + 2�z − 1����p
h�Phh + ��1 + �z − 1��h
e�Phe,

�8�

�tPhp = − �1 + � + ���1 + �z − 1��p
h�	Php + �z − 1���h
ePpe

+ 2�z − 1����p
hPhh, �9�

�tPpp = − 2�Ppp + ���1 + �z − 1��p
h�Php, �10�

�tPhe = − �1 + �z − 1����p
h + ��1 + �z − 1��h
e�	Phe

+ 2�z − 1���h
ePee + 2Phh + �Php, �11�

�tPpe = − �� + �z − 1���h
e�Ppe + �z − 1����p
hPhe + Php

+ 2�Ppp, �12�

�tPee = − 2�z − 1���h
ePee + Phe + �Ppe. �13�

The joint probabilities P��� can be expressed in terms of the
conditional probabilities as

P��� = �����
��2 − ��,��� , �14�

where ��,�� is the Kronecker symbol. The factor 2 for �
��� reflects the two possible choices, because � can be on
either end of the bond.

There are some subtleties in Eqs. �6�–�13� that might not
be immediately obvious. In Eq. �8�, for instance, there is a
factor of 2 in the first term. That term describes a process
where an edge connecting two host sites turns due to a death
of a host into an edge connecting an empty site to a host-
carrying site. The prefactor comes from the fact that this can
happen in two ways, i.e., either of the two hosts can die. For
similar reasons, a prefactor of 2 can also be found in the
second term of Eq. �8�. However, the rest of the terms in the
equation do not have these prefactors since a similar symme-
try does not exist.

In principle Eqs. �6�–�13� are solvable in the steady state.
Consider first the SIS model, i.e., the case without any para-
sites. Setting �=0 and looking at the steady state of Eq. �6�
immediately yields

�e
h =
1

z�
. �15�

Similarly, setting Ppe=0 in Eq. �13� and using the identities
Pee=�e�e
e and Phe=2�e�h
e gives

�e
e =
1

�z − 1��
. �16�

Expressing �h as

�h = �e

�h
e

�e
h
= �1 − �h�

�h
e

�e
h
, �17�

using the identity �e
e+�h
e=1, and plugging in Eqs. �15� and
�16� finally gives

FIG. 2. Phase diagram for Bethe lattice with z=4 in the �� ,��
plane with �=1.2 and N=40 000 nodes. Singlet approach �mean
field� compared to doublet approach �pair approximation� both ana-
lytically and via stability analysis and Monte Carlo simulations. The
abbreviations denote the parasite-absorbing �p.a.�, coexistence
�c.e.�, and empty phases, the last of which is the phase where both
populations will eventually become extinct. All three solutions are
in qualitative agreement with each other. As one expects, the pair
approximation predicts the need of higher growth rates �� and ��
than the singlet approach.
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�h =
�z − 1�� − 1

�z − 1�� − 1/z
, �18�

from the numerator of which the critical point follows:

�c
D =

1

�z − 1�
. �19�

Note that this is different from the mean field result �c
MF

=1/z. It is also worth noting that rigorous mathematical re-
sults of the contact process �26� give bounds on the critical
point as

1

z
� �c �

1

z − 1
. �20�

Next consider the boundary between the parasite-
absorbing and the coexistence phases. Here, hosts live well
while parasites are near extinction. Expanding the steady
state solution in the limit of small parasite population we
derive an equation for the phase boundary. Define two aux-
iliary quantities A=�h
p and B=�h
p+�p
p. Form an equation
for �tA and set it to vanish since we are looking at the steady
state

�A

�t
=

�

�t

Php

2�p
=

1

2�p
� �Php

�t
− PhpMp� = 0 �21�

where the rate equation �7� has been used, and Mp is the
Malthusian parameter or growth rate at low densities of the
parasites, i.e.,

Mp = − � + ��z�h
p = − � + ��zA . �22�

Plugging Eq. �9� into Eq. �21�, using Eq. �14� and the results
of Eqs. �15� and �16� at vanishing parasite population we
arrive at

2z�z − 1��1 − B��2 + �2z2��A�1 − A� + 2z�B − 1 − A�1

+ 2����	� − 2�z − 1�A�� = 0. �23�

Similarly, starting at the rate equation for B,

�B

�t
= −

��e
p

�t
=

1

2�p
�PepMp −

�Pep

�t
� , �24�

using Eqs. �12� and Eq. �14� together with the results of Eqs.
�15� and �16�, one gets

2z�z − 1��1 − B��2 + 2z2��A�1 − B�� + 2z��B − A��1 − ��

− 1�� − 2�z − 1�A�� = 0 �25�

given that ��0.
Now, solve for A in the steady state version of Eq. �7�,

substitute this in Eqs. �23� and �25�, and eliminate B from the
resulting two equations to get

� =
z�z − 1��2 + z��

z�z − 1�2�2 + z��z − 1��� − 1� − ��� + ��1 − z�
�26�

for the phase boundary between parasite-absorbing and co-
existence phases in the �� ,�� plane. Note that, contrary to

the mean field approximation, the phase boundary defined by
this equation does not meet that defined by Eq. �19� at �
→� since �=�c

D is not a zero of the denominator of Eq.
�26�. It also holds that �c→1/ �z−1� as �→� so that in this
limit the parasites always find hosts on all nodes and there-
fore behave as the SIS model does.

In addition to the solution above we linearize the doublet
rate equations around the previously obtained fixed point
with a host population and no parasites, i.e., �p= Ppp= Php
= Pep=0. Replacing the conditional probabilities ���
� by
joint probabilities P��� as in Eq. �14� we get a matrix which
is of the form

M = �Mh Mhp

0 Mp
� , �27�

where Mh governs the stability of the “host only” solution,
Mhp the effect of a small parasite population on the hosts,
and Mp the growth of parasites at low densities. The block in
the lower left corner is zero since the state without parasites
is an absorbing one, i.e., a perturbation in the host density
cannot reintroduce parasite population into the system.

The eigenvalues of a matrix with the structure of Eq. �27�
are just those of Mh and Mp, irrespective of Mhp. The stabil-
ity of the host population has been discussed above, so we
are only interested in the �real parts of the� eigenvalues of the
matrix in the following equation,

d

dt
�p

Php

Ppp

Pep

� =− �
�z�

2
0 0

0 B 0 �̃

0 �� − 2� 0

0 C 2� − � − �̃

� �p

Php

Ppp

Pep

�
�28�

with

B = �z − 1����z� − 1�/�z�� − 1 − � − �� , �29�

C = �z − 1���/�z�� + 1, �30�

�̃ = �z − 1�� − 1. �31�

Note that �̃ is proportional to the excess over the critical
host growth rate, �−�c.

The left column of the matrix in Eq. �28� is empty except
for the diagonal element, which gives the first eigenvalue
−�. We therefore restrict ourselves to the remaining 3�3
matrix. It is straightforward to calculate its eigenvalues ex-
plicitly, from which the phase boundary can be deduced as
follows. For each fixed �, we consider the real part of the
largest eigenvalue of the 3�3 matrix as a function of �, and
find its zero numerically, leading to a point ���� that lies at
the phase boundary. The results are shown in Fig. 2 for the
case �=1.2 and z=4.

The absence of the tricritical point can be seen easily. As

�↘�c the excess growth rate �̃↘0, and the matrix becomes
lower triangular. All three diagonal elements yield negative
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eigenvalues, in particular in this limit B→−�� /z−�−1	0.
In particular, none of the eigenvalues approaches zero as �
→�, which leads again to the conclusion that the two phase
boundaries do not meet at this limit.

In comparison to these results the mean field approxima-
tion underestimates the critical values for the spreading pa-
rameters. It does not take into account the clustering of popu-
lations, i.e., the fact that next to a populated site there is
likely another one, which cannot be invaded any more. So
the possibility for growth is overestimated.

The phase diagram of the HP model in the �� ,�� plane
obtained from both theoretical approaches and from a sto-
chastic simulation using graph approximation discussed in
Sec. II B is drawn in Fig. 2. In the simulations, rough esti-
mates for the phase boundaries were obtained by performing
a series of simulations with different � for each fixed � and
observing when the population died out. The largest value of
� at which the population dies out is then defined to be the
estimate for the position of the phase boundary. From the
figure we see that both analytical solutions are in qualitative
agreement with each other and with the numerical results. A
property worth noting of the phase diagram is the lack of a
“tricritical point” and thus the phase boundary between
empty and coexistence phases. Consider also that the singlet
approach does reproduce the features of the phase diagram in
the Bethe lattice case.

B. Scale-free graph

1. Singlet approach

On graphs with nonconstant degrees the occupancy of a
node depends on its coordination number. In general, the
higher the degree of a node, the greater is its tendency to be
populated. Following Ref. �19� the rate equations for the
occupancies �h

k and �p
k on nodes of degree k can be written as

�t�h
k�t� = − �h

k�t� + �k�1 − �h
k�t� − �p

k�t���k��,��

− ��k�h
k�t�k��,�� , �32�

�t�p
k�t� = − ��p

k�t� + ��k�h
k�t�k��,�� , �33�

where �k�� ,�� and k�� ,�� are the probabilities that a
given link points to an infected or a parasitized node, respec-
tively. In Eq. �32� the first term on the right-hand side �RHS�
corresponds to the death of the hosts, the second one to the
host spreading and the third one to parasite spreading, dimin-
ishing the number of sites that carry host but no parasite. In
Eq. �33� the first term on the RHS describes the death of the
parasites while the second one encompasses the spreading. It
is known �19� that there is no epidemic threshold if the dis-
tribution of node degrees is fat tailed.

The critical behavior of the HP model as obtained from
the mean field equations above turns out to be incorrect and
is in contradiction to the numerical findings. To see this,
consider the rate equations �32� and �33� in the limit of small
�, i.e., by a Taylor expansion in �. The interaction term
���h

kk�� ,�� is quadratic in � since k�� ,���� and drops
out from the expansion to first order. This, in turn, means that
in this limit the host population behaves as in the SIS model

and the parasite population dies out since its equation only
has exponentially decaying solutions. Furthermore, this rules
out the possibility of a zero epidemic threshold for the para-
sites, since when the spreading rate approaches zero also the
prevalence does so. This leads to the aforementioned contra-
diction. The corresponding numerical results are presented in
Fig.4 below.

2. Singlet approach with a substantial host population

Next, we use the singlet approach to look at the behavior
of the parasites when the host population is well established.
The calculation presented here is a straightforward generali-
zation of that in Ref. �27�.

The rate equation of the parasites in a Markovian corre-
lated graph in the singlet approach can be written in the limit
of small prevalence as

�

�t
�p

k = − �p
k + ���h

k�k, �34�

where �k=�k�k�kk��p
k�, and �kk�= P�k� 
k�, i.e., the condi-

tional probability that starting from a node of degree k and
following a random edge one is led to a node of degree k�.
For uncorrelated networks, P�k� 
k�=kP�k�� / �k�, where P�k�
is the degree distribution of the underlying network.

If the parameters are chosen such that there are plenty of
hosts and that parasites are near extinction the feedback cou-
pling of the host population to the parasites can be neglected
and �h

k approximated by a constant vector given by the solu-
tion of the SIS model. The zero solution �p

k =0 ∀ k is always
a �formal� solution of the system, so we have to study its
stability. Take Eq. �34�, denote �= ��p

1
¯�p

kc�T and write the
equation in a matrix form

�

�t
� = �− I + ���h

kk�kk��� = �− I + ��Ckk��� , �35�

where Ckk�=�h
kk�kk�.

Looking at the matrix elements Ckk� gives

Ckk�
P�k�
�h

k = Ck�k
P�k��

�h
k�

�36�

where the detailed balance condition of the network �28�

kP�k�
k�P�k� = k�P�k
k��P�k�� �37�

has been used. From Eq. �36� it follows that C and CT have
the same eigenvalues since, if vk is any eigenvector of C
corresponding to eigenvalue �, then vkP�k� /��k� is an eigen-
vector of CT with the same eigenvalue. This, in turn, has the
consequence that the spectrum of C is real. Again, the zero
solution is unstable, if the matrix −I+�C has at least one
positive eigenvalue, and the critical value of � is �critical
=�M

−1.
Next, use the following corollary �27� of the Frobenius

theorem. Let Akk� be any positive irreducible matrix. Its larg-
est eigenvalue �M can be estimated from below as
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�M � min
k
� 1

��k��
k�

Akk���k��� , �38�

where ��k� is an arbitrary positive vector. Now, set ��k�
=k�h

k and A=C2 to get

�39�

Above k̄nn
�h��l ,kc� denotes the average nearest neighbor de-

gree of such neighbors that carry a host, conditioned that we
are looking at a node of degree l. Since the average nearest

neighbor degree of all neighbors k̄nn�l ,kc�=�k�k�P�k� 
 l� di-
verges �29� as kc→� and �h

k necessarily saturates to a con-

stant value �h
k=��1 with large k, k̄nn

�h��l ,kc� must also diverge
at the same limit. Thus the RHS of Eq. �39� diverges, giving
�M →� and

�critical → 0 �40�

at the thermodynamic limit.

3. Doublet approach

Next, we formulate rate equations for a graph with a
given degree distribution and degree-degree correlations us-
ing the doublet approach or pair approximation. The correla-
tions are included in the treatment since their use is natural in
the context of pair approximations. The correlated network
contains its uncorrelated counterpart as a special case.

The notation is as follows. P���
kk� is the probability that a

randomly chosen edge that connects nodes with connectivi-
ties k and k� is such that the state of the node with connec-

tivity k �k�� is � ����, possible states being e, h, or p. Q���
kk� is

the conditional probability that a randomly chosen edge that
connects nodes with connectivities k and k� is such that the
state of the node with connectivity k� is �� conditioned that
the state of the node with connectivity k is �. Let �kk� be as
above.

Using the notation above, the rate equations for the SIS
model needed for the present treatment can be written as
follows:

�t�h
k = − �h

k + ��
k�

k�kk�Peh
kk�, �41�

�tPhh
kk� = − 2Phh

kk� + �Phe
kk� + ��

k�

�k�k�Phe
k�k��k� − 1�Qeh

k�k,

�42�

where in Eq. �42� the first term on the right hand side denotes
the process where an infected node gets cured, the second the

process where a node of degree k infects a node of degree k�
and the third the process where a node of degree k� infects a
node of degree k�, which in turn has another neighbor of
degree k that is infected, turning the edge between the latter
two into an edge connecting two infected nodes.

For the HP model, only one rate equation is needed for the
present treatment, namely that of the parasite prevalence

�t�p
k = − ��p

k + ���
k�

k�kk�Php
kk�. �43�

Now consider the steady state in the SIS model. Multiply
Eq. �41� by P�k� and sum over all k to get

�h = �Peh. �44�

Peh is the fraction of all edges in the network that connect an
empty node to one with host and �h is the average host
prevalence in the whole network.

The last term on the right hand side of Eq. �42� is positive.
Thus in the steady state we can write, leaving out the said
term,

Phh
kk� �

�

2
Peh

kk�. �45�

Multiplying this by kP�k��kk�, summing over all k and k�,
and combining with Eq. �44� we get

Phh �
1

2
�h,

which implies for the relative density of host-host nearest-
neighbor pairs that

Phh

��h�2 �
1

2

1

�h
→ � as �h → 0. �46�

That is, in the limit of small population, the relative density
of host-host pairs is enormous. Thus the prevalence correla-
tions in nearest-neighbor nodes are also huge. Since the sin-
glet approach neglects these correlations, this gives reasons
to expect that it is not able to capture the properties in the HP
model correctly, even though it is known that in SIS model it
does �27�.

Consider Eq. �43� in the steady state. Multiplying by P�k�
and summing over all k gives

�p = �Php �47�

which in turn gives

Php

�h�p
=

1

��h
→ � as �p → 0, �48�

since �→0 as �p→0.
Equation �47� tells us that the number of edges through

which the parasite population can spread is proportional to
the parasite prevalence �instead of the product of parasite and
host prevalences�. This, in turn, tells that the dynamics of the
parasites is similar to the dynamics of the hosts in the SIS
model �since in the SIS model the number of edges that can
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spread the population is proportional to the population den-
sity in the steady state� and serves as an explanation to the
zero threshold of the parasites.

IV. MONTE CARLO SIMULATIONS

For a numerical comparison we have simulated the host-
parasite-model in Barabási-Albert networks of sizes L
=213, . . . ,221 under the conditions in which �h�0.30 and
�p
�h, i.e., with a stable host population and parasites close
to extinction. The simulations are always started with ran-
dom initial conditions by giving 25% of the nodes the status
host and 5% of the nodes the status parasitized indepen-
dently. Then the simulation is run for a given saturation pe-
riod of 1000 Monte Carlo �MC� steps during which even the
largest system reaches a stationary state. Quantities of inter-
est are then averaged over another 1000 MC steps, where
one MC step refers to the simultaneous �parallel� update
event of the state variables of the nodes. The used transition
probabilities p��� from state � to state �� in a single time
step are peh=0.012, phe=0.05, ppe=0.25, and php is varied in
the range from 0.02 to 0.2 to produce the variation in �
= php / ppe. This procedure was repeated N times for different
realizations of the graphs with N varying from N=50 for L
=213 to N=5 for L=221.

Figure 3 shows how �p decays as a function of a host’s
parazitation probability parameter �. Below a size dependent
critical value �c�L� the parasites become extinct resulting in
a left-alone host population obeying dynamics defined by the
SIS model. For instance when L=213 one may estimate that
�c�0.26. The inset in Fig. 3 strongly suggests that the rela-
tionship �p�exp�−�const� /�� is established as in the SIS
model �19�.

To track �c�L� more accurately we have studied the ex-
tinction probability Pext�� ,L� of the parasites during 2000
MC steps from different realizations of BA graphs. The criti-
cal point is then determined to be the highest value of �
below which the population dies away in a typical realization
of a BA graph, and the sizes of the error bars in �c are
estimated from the width of the window in which Pext�� ,L�

decays from 1 to 0. Figure 4 shows a scaling �c�L�
�1/ ln�L� in the region 221�L�216, which again compares
to the finite size scaling of the critical threshold in the SIS
model �30�.

Since the probability for a node to become infected de-
pends on its degree we next take a look at the parasite preva-
lence of nodes of degree k �p

k in Fig. 5 and the average
degree of a site occupied by a parasite �k 
 p� in Fig. 6.

Figure 5 shows that when approaching �c the relationship
�p

k �k begins to hold better and better whereas �h
k does not

change remarkably since the host population is large. In fact,
we have noted that, in analogy with the SIS model, the scal-
ing of �p

k is not just a matter of coincidence but reflects the
more general presence of the factor �p

k �1/ �1+ �const� /k�
which is proportional to k at small �, or for large values of
the constant. Generally, this behavior implies that the largest
connected component of hosts serves as a “scalefree” graph
for the parasites thus partly explaining the absence of a criti-
cal point in the thermodynamic limit.

As �→�c, survival of the parasite population becomes
more and more difficult. Figure 6 shows a consequence of

FIG. 3. �Color online� Average parasite prevalence as a function
of its spreading parameter �. The inset corroborates an Arrhenius
relation �p�exp�−�const� /��, as in the SIS model �19�. The error
bars are smaller than the symbol size.

FIG. 4. �Color online� Scaling of the critical point vs system
size. The dashed line works as a guide to the eye and suggests
�c�L��1/ ln�L� as for the SIS model �19�.

FIG. 5. �Color online� Average parasite prevalence and its de-
pendence on the node degree. Here L=218 and only the �k of degree
up to k=100 are shown since the statistics for larger k become
worse.
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this: the parasites do not prefer living in nodes of small de-
gree anymore but, instead, the average degree of the nodes
inhabited by them increases. In fact, as the inset of Fig. 6
shows, the scaling �k 
 p��1/� is established. A similar re-
sult should actually also hold for the SIS model, and is pre-
dicted even by the mean field equations �32� and �33�. This
in turn follows from the fact that for a decreasing � the
parasite density begins to saturate only at a higher and higher
k �recall that it is linear in k for small degrees�. We have also
considered the autocorrelations of the time-series of the para-
site prevalence, in analogy to Ref. �35�. This decays expo-
nentially with a time-scale constant that increases as the
�pseudo�critical point �for L fixed� is approached from above.

V. DISCUSSION

In this paper we have studied a two-population model
�“hosts” and “parasites”�. First, as a preliminary, this prob-
lem was considered on the Bethe lattice. It turns out that the
mean field treatment can be augmented with the pair ap-
proximation. In particular we have been able to establish the
generic form of phase diagram depicted in Fig. 2. This in-
cludes no tricritical point.

The main finding of this work concerns the epidemic
threshold of the parasites, in the presence of a nonzero host
population, on scale-free graphs. Analytical arguments based
on the neighbor-pair probabilities reveal that in full analogy
with the SIS model itself, the threshold is zero in the ther-
modynamic limit. Numerical simulations on Barabási-Albert
model graphs imply that the finite-size behavior follows,
also, the same scaling, and confirm this picture. These both
findings might be surprising at first sight, due to the possible
complications from correlations. Concomitantly, correlations
in the parasite dynamics are expected to follow the same
picture as in the case of the SIS model.

A striking feature related to correlated activity is the “es-
cape” of the parasite population to vertices with, on the av-
erage, a high degree, which can actually be explained within
the standard picture of �SIS-type� population behavior as the
prevalence is reduced by changing a control parameter. Due

to the nonregular nature of the scale-free graphs we have not
seen any indications of, e.g., periodic or chaotic oscillations
that arise in many similar models on regular lattices �10,11�.
Another possible angle would be to study contact-process-
like models �2�, where the spreading rate out of a graph
vertex to a neighbor would depend on the degree of the out-
vertex, for both parasites and hosts. The phase diagram of
such model would be the same for the Bethe case, but for a
scale-free network one would, in analogy with the contact
process itself �31�, expect a finite threshold instead of the
vanishing one for the SIS model. We have confirmed this,
analytically, but obviously numerical studies would be of
interest.

The results have implications, less for Bethe lattices
which serve as an analytically tractable special case, but pos-
sibly for dynamical processes on real scale-free graphs. Ex-
amples can be found from ecology �metapopulation dynam-
ics�, where similar multispecies scenarios have already been
studied. Parasitoids do play a crucial role for the population
dynamics of the endangered butterfly species Melitaea cinxia
in its fragmented habitat on the Åland islands in the Baltic
Sea, which fit less well to single species models �33,34�. Due
to the distribution of patch sizes and distances between them,
the corresponding network model has a large tail degree dis-
tribution �35�. Whether a given patch is populated by hosts
only or also by parasitoids depends on its local connected-
ness. At least qualitatively the observations agree with those
in Fig. 6 and more systematic studies can be envisioned. The
spreading rate depends on distance between and sizes of
patches, in a nontrivial way �32�. If one translates the under-
lying landscape to a network model, the resulting spreading
rates may depend strongly or weakly on the degree of the
emitting node, i.e., lie somewhere in the range between a
generalized contact process and SIS-type models. Thus the
limit considered by �31� may well be relevant in certain eco-
logical systems.

Another field of examples is epidemiology and vaccina-
tion strategies. Knowledge of nontrivial network structures
in disease transmission can be used for vaccination �see, e.g.,
�36�� or outbreak prediction, e.g., �37�, and also the impor-
tance of superinfections has been documented �see, e.g., a
seminal work in an evolutionary context �38��. Our ansatz is
an attempt to combine both points of view. From the scale-
free network viewpoint the fundamental idea of concentrat-
ing the effort on nodes with a high k is valid here as well
�39,40�; consider in particular the “escape” of parasites close
to extinction mentioned above. To fight parasites one needs,
as well, to avoid random immunization. In this context an-
other paradigmatic model is the susceptible-infected-
removed �SIR� model which is a variant of ordinary perco-
lation. By taking in the HP model the right combination of
limits for the parameters �essentially, disallowing recovery to
the empty state from the H and P states�, one obtains a
variant of the SIR model which resembles in such language
“bootstrap percolation” since the R �P� sites are created only
via contact with a neighbor in R. One should thus take note
of possible generalizations of the HP model using similar
recipes as can be applied to the SIR-style ones �41�.

In the case of the SIS model, the crossover �or the time-
dependent picture� to the steady state turns out to be inter-

FIG. 6. �Color online� The expectation value of the degree of a
site occupied by the parasites. A scaling form for the average degree
of parasitized nodes, �k 
 p�, is found for small �. The straight line in
the inset is a guide to the eye.
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esting, which might be worth looking at here as well �42�.
Another practical case related to this might be, say, viruses
spreading as attachments to emails on the Internet �43�,
where again one is confronted with a dynamical graph �of
email connections� on top of a larger one �Internet�. Finally,
we would like to point out that our work could be extended
to other similar multispecies models. An example would be a
hierarchy of contact processes �A→B ,B→C , . . . � �44,45�.
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